Get In Touch
FOMO WORKS, Grenseveien 21,
4313 Sandnes, Norway.
+47 92511386
Work Inquiries
Interested in working with us?
[email protected]
+91 9765419976
Back

Machine Learning Services

Machine Learning Services

“Netflix saved $1 billion this year as a result of its machine learning algorithm”

The Machine Learning algorithm used by Netflix allows it to recommend personalized TV shows and movies to subscribers.

What is Machine Learning?

Machine learning is an application of Artificial Intelligence (AI) that enables systems to automatically learn and improve from experience without human intervention through manual programming. Much like future-forward movies in the 90s, machine learning focuses on the development of computer programs that can access data and use it to learn for themselves.

Machine learning is no longer a buzzword in the world of tech. It is a powerful tool that enables businesses to address their challenges, optimize operations, and streamline the customer experience. By 2027, machine learning solutions are expected to bring an extra $6.6T in marketing and $6T in manufacturing. And that is only the tip of the iceberg! 

 

So how does ML differ from AI?

To put it simply, Machine Learning is a branch of Artificial Intelligence, whereas AI deals with the broader concept of machines being able to carry out tasks in a way that we would consider “smart”. Machine Learning is a current application of AI, based around the concept that we should really just be able to give machines access to data and let them learn for themselves.

One of the core concepts of ML as a part of AI, is that rather than teaching computers everything they need to know about the world and how to carry out tasks, it might be possible to teach them to learn for themselves. The emergence of the internet led to a huge increase in the amount of digital information being generated, stored, and made available for analysis. 

“AutoML, Google’s AI that helps the company create other AIs for new projects, learned to replicate itself in October of 2017”

What this means is that essentially, Artificial Intelligence is better at ML than humans.

“You can have machine learning without sophisticated algorithms, but not without good data.”

FAQs about Machine Learning

What is deep learning and how is it different from machine learning?

Deep learning, also known as deep neural networks are set algorithms inspired by working principals of the human brain where it learns to identify patterns in data for decision making. 

Deep learning is a subfield of representation learning, which in fact, is a subfield of machine learning.

What are the different types of Machine learning algorithms?

Typically, there are 4 types of Machine Learning:

  1. Supervised algorithms: Set of algorithms to learn from labelled data, e.g. images labelled with whether a human face exists in an image or not.
  2. Non-supervised algorithms: Set of algorithms to learn from data without labels or classes, e.g. set of images given to group similar images.
  3. Semi-supervised algorithms: algorithms that fall somewhere between above and uses both labelled and non-labelled data.
  4. Reinforcement learning algorithms: Set of algorithms to learn best actions to take given a current scenario that maximizes overall reward.
Why has Machine Learning or Cognitive Computing become such a hot topic?

The reason for the increasing interest is due to the significant increase in data that is now available, which makes machine learning more relevant, accurate and more effective for more businesses than ever before.  Machine Learning automates decisions by analysing large and diverse datasets at lightning speeds, predicting what would lead to a positive outcome and making or taking the recommended action.

What are the potential benefits of creating machines that can be programmed to learn?
Machine Learning automates decisions in a continuous improvement cycle. And machines automate actions. The combination of both greatly reduces the need for human intervention for a process to be completed. When we remove the reliance on human intervention we tend to achieve faster response times, a reduction in cost and a reduction in human error or bias for any process – from the granting of a loan to the landing of a plane.
How does ML learn from data?

The training data is composed of two parts: features and labels. Using models (usually the classifier is named after the statistical model it uses, but some models don’t use statistical

models, like neural nets,), the classifier learns what features (or combinations of features) are

associated with which labels.

methods of Machine Learning

A look at some methods of Machine Learning

Machine learning algorithms are often categorized as supervised or unsupervised

Supervised machine learning algorithms

Supervised machine learning algorithms can apply what has been learned in the past to new data using labelled examples to predict future events. Starting from the analysis of a known training dataset, the learning algorithm produces an inferred function to make predictions about the output values. The system is able to provide targets for any new input after sufficient training. The learning algorithm can also compare its output with the correct, intended output and find errors in order to modify the model accordingly.

Unsupervised machine learning algorithms

Unline supervise algorithms, unsupervised machine learning algorithms are used when the information used to train is neither classified nor labelled. Unsupervised learning studies how systems can infer a function to describe a hidden structure from unlabeled data. The system doesn’t figure out the right output, but it explores the data and can draw inferences from datasets to describe hidden structures from unlabeled data.

 

Semi-supervised machine learning algorithms

Semi-supervised machine learning algorithms fall somewhere in between supervised and unsupervised learning since they use both labelled and unlabeled data for training – typically a small amount of labelled data and a large amount of unlabeled data. The systems that use this method are able to considerably improve learning accuracy. Usually, semi-supervised learning is chosen when the acquired labelled data requires skilled and relevant resources in order to train it / learn from it. Otherwise, acquiring unlabeled data generally doesn’t require additional resources.

Reinforcement machine learning algorithms

Reinforcement machine learning algorithms is a learning method that interacts with its environment by producing actions and discovers errors or rewards. Trial and error search and delayed reward are the most relevant characteristics of reinforcement learning. This method allows machines and software agents to automatically determine the ideal behaviour within a specific context in order to maximize its performance. Simple reward feedback is required for the agent to learn which action is best; this is known as the reinforcement signal.

 

Why Kilowott's Machine Learning Services?

Whether you run a small startup or you’re a part of a large enterprise, you can leverage the power of ML to benefit your business. Our specialists are proficient in all industries and know how to address your challenges with innovative techs.

ML Model Development

We analyze your business case and create an accurate algorithm that matches your requirements. The next step is training machine learning models with your real data or mock data to achieve the best results. Our ML services company delivers the solution which is ready to be implemented straight away.

Data Engineering

Your software processes large amounts of information daily. If you want to make use of big data and streamline business operations, data engineering is what you need. Our professionals will create reliable data pipelines, gather information from various sources, and prepare for analysis to provide you with efficient ML services tailored to the needs of your business.

Data analysis

Use ML to get the most out of your database inputs. The proper analysis enables you to understand customer needs and allows making accurate predictions about the changes in market demand, pricing, competition, etc. Reach out to Kilowott for top-notch services and gain a competitive edge in your industry!

Automate Business Processes

Do you have any tedious or monotonous activities in your work? Think of delegating it to artificial intelligence! With high-quality machine learning models, you can get rid of manual work and focus on strategically important tasks.

Improve Client Segmentation

Get to know your customers better with innovative and accurate algorithms created by our data science team. Gain valuable insights into your clients’ needs, wants and habits to boost sales and improve your performance.

Use Predictive Analytics

Imagine you can predict all the changes on the market and adapt to them even before they appear. Carry out an anomaly detection and fulfill your wish! With our first-class ML engineers, you are always one step ahead of your rivals.

Boost Customer Satisfaction

When traditional monitoring tools provide little information on how happy your clients are, it is the time to build a smart ML solution. Use advanced data science software to monitor your performance and increase customer retention.

Let's Talk!

For any queries about Kilowott’s services/solutions, please complete the form below and we will get back to you soon.

This website stores cookies on your computer. Cookie Policy